
Oscillations and scaling in the cluster size distribution for kinetic gelation

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1985 J. Phys. A: Math. Gen. 18 L575

(http://iopscience.iop.org/0305-4470/18/10/004)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 15:47

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/18/10
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 18 (1985) L575-L578. Printed in Great Britain 

LEITER TO THE EDITOR 

Oscillations and scaling in the cluster size distribution for 
kinetic gelation 

Ashvin Chhabrat, D Matthews-Morgan?, D P Landaut and 
H J HerrmannS 
t Department of Physics and Astronomy, University of Georgia, Athens, Georgia 30602, 
USA 
$ Service de Physique Theonque C E N  Saclay, 91191 Cif-sur-Yvette Cedex, France 

Received 15 May 1985 

Abstract. We have studied the distribution of cluster sizes ns in an irreversible kinetic 
gelation model using Monte Carlo simulations on  a simple cubic lattice. We find quite 
surprising, pronounced oscillations in the distribution n, with cluster size s. The variation 
of n, with s and the fraction p of bonds formed is described by unconventional scaling 
behaviour. 

The initial description of the sol-gel transition in terms of a simple classical approach 
[l] has often been replaced by percolation theory [2,3]t. Recently, however, Herrmann 
et a1 [5 ,6 ]  (HLS) used a kinetic growth model [7] to show that gelation by additive 
polymerisation belongs to a different universality class than percolation. (Although 
the critical exponents associated with bulk properties appeared to be the same, a 
universal amplitude ratio turned out to be different.) In this letter we examine the 
cluster size distribution for the model studied by HLS. If we define n, as the number 
of clusters of size s, we would expect that, at least for large s, the general shape and 
form for the distribution and scaling laws for n, would be the same for gelation and 
percolation. At the same time, because of the upper bound which exists [5] for the 
number of initiators (and hence the number of clusters) we might expect to see fewer 
clusters of small size for gelation as opposed to percolation [8]. In the following we 
report results for the quite unexpected behaviour which we actually observed. 

Our model consists of tetrafunctional monomers on each site of an L x L x L simple 
cubic lattice [5]. A small randomly selected number of the sites (3c,L3)  are occupied 
by isolated initiators attached to the monomers$. These initiators form the growth 
centres: an initiator may be transferred to a randomly chosen nearest neighbour by 
the formation of a bond between them. (The bond may be formed, of course, only if 
the monomer is not already saturated.) If a bond is formed to a site which is already 
occupied by an initiator the two initiators annihilate each other. An initiator may also 
be ‘trapped’ if all its nearest-neighbour sites are saturated. The number of ‘active’ 
initiators may therefore decrease substantially with time, where time is defined as being 
proportional to the number of attempts to grow a bond. Individual clusters will not 

t A clear and complete comparison and description of classical and percolation theories is given in [4]. 
$The present model differs from that studied in [ 5 ]  only in that isolated initiators are formed instead 
of pairs as in [ 5 ] .  Some results for bulk properties of the present model are given in [6] .  
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only grow but will also merge to form larger clusters until an infinite cluster is formed 
at the gel point. 

We have studied the cluster distribution function n, as a function of cluster size s 
for different lattice sizes and initiator concentrations. In figure 1 we show results 
obtained for L = 60, c, = 0.0003 averaged over 1.5 x lo4 growth samples. This damped, 
oscillatory behaviour is in striking contrast to the simple monotonically decreasing 
variation found for percolation [9]. In fact, the monotonic decrease which we see at 
very small s is completely unrelated to percolation behaviour but arises instead due 
to initiator annihilation. Hence this ‘maximum’ at s = 1 is not related to the oscillations 
which occur at larger s and we have seen that it can be eliminated by suppressing 
annihilation. The cluster size distribution for this model was previously studied by 
Manneville and de Seze [7] but with large c, and statistics which were more than an 
order of magnitude worse than ours; they did not recognise oscillatory behaviour. 
(Jan et al [8] simulated the equivalent model in two dimensions, but also with too few 
samples, and hence did not notice this oscillatory behaviour.) Although the current 
study is for tetrafunctional monomers only, it is straightforward to extend the investiga- 
tion to include bifunctional monomers as well. The data for L = 20 and L = 40 are 
qualitatitively similar but show an increase in the maxima for large s due to finite size 
effects. A large number of clusters are formed at characteristic cluster size s*; additional 
maxima are found at -2s*, 3s*, . . . ms* where multiple clusters of size s* have paired 
together. s* varies only slightly with L but has a strong dependence on the number 
of bonds grown in the system. The number of bonds is proportional to p which is 
equal to the fraction of all possible bonds which has been formed. We find that s* - p p  
with p = 1. At p c  the first 7-8 maxima decay as -m-’,’ and then the decay begins to 
slow. In contrast the minima decay as m - x  where x<2,  but x changes with s and 
apparently approaches -2.2. We have also determined the fraction of sites which are 
bonded S as a functionof p .  Defining 

S =  n,s 
S S 2  
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Figure 1. Distribution of clusters (see (6)) as a function of cluster size s for L = 6 0 ,  
c, =0.0003: ( a )  p =0.016; ( b )  p = p c = 0 . 0 3 7 ;  ( c )  p = O . O 5 3 .  Note the different scales for 
each plot. 
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we find for 0.0166 p 6 0.08 

(2) s = 4 0 . 8 9  

with A = 1 ; there is no noticeable change in behaviour at pc.  Having found a cluster 
size distribution distinctly different from percolation, we are faced with the question 
of whether or not the scaling form used for percolation can apply [4]: 

ns = s- 'P[ (P  -Pc)sC1. (3) 

From an analysis of our data we have concluded that it is not possible to describe the 
cluster distribution by (3). 

From our previous discussion of the location of the peaks of the oscillations it is 
evident that for this model (s/s*) is a natural scaling variable. In addition, any form 
which we use for the cluster size distribution must yield power law behaviour for the 
bulk properties with critical exponents which are essentially the same as for percolation 
[41, e.g. 

- 1  

x = c nss2( c 4) - I1 - P I P c l - y  (4) 

where the infinite cluster is excluded from the summations. We have found empirically 
that it is possible to satisfy these concerns and to describe our data by the unusual 
scaling form 

( 5 )  n, = ( s / ~ * ) - ~  exp[-b(s/s*)"lp -p,lIf(s/s*) exp[a(p -PJI 

where a and b are constants. Here the dependence upon T is the same as in (3) ,  with 
the redefinition of the scaling variable. If one inserts (5) into (4), it is easy to see that 
U and T defined in ( 5 )  are the 'droplet exponents' [4] which appear in (3) .  The data 
analysis is relatively insensitive to the choice of U and T, so we fixed them at the 
percolation values [4,10]. Since s* is proportional to p we can use s / p  as the scaling 
variable and can rearrange the terms in ( 5 )  to solve for f(s/p): 

( 6 )  

In figure 2 we show scaling plots for our data using ( 6 ) .  The best choices for a and b 
are quite different above and below p c ;  using these values we are able to obtain good 
scaling over a wide range of Ip -pel and s. The first two factors in ( 5 )  are essentially 
the same as those which appear in the asymptotic (large s) region [4] for the usual 
scaling relation (3). The last two factors contain (s/s*) and ( p - p c )  dependence 
respectively; the function f(s/s*) (defined by figure 2 )  is highly non-trivial and 
describes the explicit shape of the damped oscillations, whereas the factor exp[a( p - 
p , ) ]  is essentially a scale factor whose mathematical form could be different without 
having any impact on the critical behaviour. A reasonable extrapolation suggests that 
the minima and maxima do not meet even at s =CO. This would mean that we have 
qualitatively different behaviour than droplet scaling since f( s/ s*) could not be treated 
as a correction. But even if the maxima and minima do converge at s =CO for finite 
cI, there is strong evidence that the damping of the oscillations disappears altogether 
in the limit cI + 0. Therefore, at least for cI + 0 a totally new scaling behaviour is found. 

In conclusion it has previously been shown that the behaviour of the bulk properties 
for kinetic gelation in three dimensions differs from that of percolation in a subtle 
way: the critical exponents appear to be the same although the critical amplitude ratios 

f ( s / p )  = n , ( s / p ) '  exp[b(s/p)"lp -pClI exp[-a(p -P,)I. 
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Figure 2. Scaling behaviour of the cluster size distribution as a function of ( s / p )  for L = 60, 
c, =0.003 (see (6)):  ( a )  p < p c ,  a = 100, b =0.1 ( p :  0, 0.0267; A,  0.0307, *, 0.0360); ( b )  
p > pc, a = 0, b = 2.6 ( p :  0, 0.0386; A, 0.0467, *, 0.0520). 

are different [ 5 ] .  In this letter we have shown that there are dramatic, qualitative 
differences in the cluster size distributions for the two models although the correspond- 
ing ‘droplet exponents’ are apparently the same. 
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